Penyelesaian Program Linear dengan
Metode Simpleks
a. Persoalan
Selesaikan tabel
simpleks berikut hingga mencapai nilai optimal
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
|
|
S1
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
|
S2
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
|
S3
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
|
Zj
|
|
||||||
|
(Cj-Zj)
|
|
||||||
b. Penyelesaian
Langkah 1
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|||
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
|
Ratio
|
|
|
S1
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
|
9
|
|
S2
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
|
5
|
|
S3
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
bk
|
4
|
|
Zj
|
0
|
0
|
0
|
0
|
0
|
|
|
||
|
(Cj-Zj)
|
80
|
100
|
0
|
0
|
0
|
|
Pivot
|
||
|
kk
|
1
|
||||||||
Langkah 2
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
||
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
|
Ratio
|
|
|
S1
|
0
|
3
|
0
|
1
|
0
|
0
|
10
|
|
3,33
|
|
S2
|
0
|
2
|
0
|
0
|
1
|
0
|
4
|
|
2
|
|
X2
|
100
|
0
|
1
|
0
|
0
|
0
|
4
|
bk
|
∞
|
|
Zj
|
0
|
100
|
0
|
0
|
0
|
400
|
|
|
|
|
(Cj-Zj)
|
80
|
0
|
0
|
0
|
0
|
|
|
Pivot
|
|
|
kk
|
2
|
||||||||
Langkah 3
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
|
|
S1
|
0
|
0
|
0
|
1
|
-1,5
|
0
|
18
|
|
X1
|
80
|
1
|
0
|
0
|
0,5
|
0
|
20
|
|
X2
|
100
|
0
|
1
|
0
|
0
|
0
|
4
|
|
Zj
|
80
|
100
|
0
|
40
|
0
|
560
|
|
|
(Cj-Zj)
|
0
|
0
|
0
|
-40
|
0
|
|
|
Karena (Cj-Zj) ≤ 0, maka sudah didapat nilai
optimal sebesar 560.
No comments:
Post a Comment